3.3 Other Considerations in the Regression Model

3.3.1 Qualitative Predictors

In our discussion so far, we have assumed that all variables in our linear
regression model are quantitative. But in practice, this is not necessarily
the case; often some predictors are qualitative.
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For example, the Credit data set displayed in Figure 3.6 records balance
(average credit card debt for a number of individuals) as well as several
quantitative predictors: age, cards (number of credit cards), education
(years of education), income (in thousands of dollars), 1imit (credit limit),
and rating (credit rating). Each panel of Figure 3.6 is a scatterplot for a
pair of variables whose identities are given by the corresponding row and
column labels. For example, the scatterplot directly to the right of the word
“Balance” depicts balance versus age, while the plot directly to the right
of “Age” corresponds to age versus cards. In addition to these quantitative
variables, we also have four qualitative variables: gender, student (student
status), status (marital status), and ethnicity (Caucasian, African Amer-
ican or Asian).
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FIGURE 3.6. The Credit data set contains information about balance, age,
cards, education, income, limit, and rating for a number of potential cus-
tomers.
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Coefficient  Std. error t-statistic p-value
Intercept 509.80 33.13 15.389 < 0.0001
gender [Female] 19.73 46.05 0.429 0.6690

TABLE 3.7. Least squares coefficient estimates associated with the regression of
balance onto gender in the Credit data set. The linear model is given in (3.27).
That is, gender is encoded as a dummy variable, as in (3.26).

Predictors with Only Two Levels

Suppose that we wish to investigate differences in credit card balance be-
tween males and females, ignoring the other variables for the moment. If a
qualitative predictor (also known as a factor) only has two levels, or possi-
ble values, then incorporating it into a regression model is very simple. We
simply create an indicator or dummy variable that takes on two possible
numerical values. For example, based on the gender variable, we can create
a new variable that takes the form

v = {1 if 4th person is female (3.26)

0 if 4th person is male,

and use this variable as a predictor in the regression equation. This results
in the model

Bo + P11+ € if ith person is female

Yi = Bo + Bix; + € = { (3.27)

Bo + € if 7th person is male.

Now Sy can be interpreted as the average credit card balance among males,
Bo + [1 as the average credit card balance among females, and 37 as the
average difference in credit card balance between females and males.

Table 3.7 displays the coefficient estimates and other information asso-
ciated with the model (3.27). The average credit card debt for males is
estimated to be $509.80, whereas females are estimated to carry $19.73 in
additional debt for a total of $509.80 + $19.73 = $529.53. However, we
notice that the p-value for the dummy variable is very high. This indicates
that there is no statistical evidence of a difference in average credit card
balance between the genders.

The decision to code females as 1 and males as 0 in (3.27) is arbitrary, and
has no effect on the regression fit, but does alter the interpretation of the
coefficients. If we had coded males as 1 and females as 0, then the estimates
for By and 1 would have been 529.53 and —19.73, respectively, leading once
again to a prediction of credit card debt of $529.53 — $19.73 = $509.80 for
males and a prediction of $529.53 for females. Alternatively, instead of a
0/1 coding scheme, we could create a dummy variable

factor

level

dummy
variable
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{1 if 7th person is female
€Ty —

—1 if 4th person is male
and use this variable in the regression equation. This results in the model

By + Buzs + {[50 + By +¢€  if ith person is female
Yi = Po 1T T € =

Bo — b1 + € if ith person is male.

Now [y can be interpreted as the overall average credit card balance (ig-
noring the gender effect), and /3, is the amount that females are above the
average and males are below the average. In this example, the estimate for
Bo would be $519.665, halfway between the male and female averages of
$509.80 and $529.53. The estimate for 3; would be $9.865, which is half of
$19.73, the average difference between females and males. It is important to
note that the final predictions for the credit balances of males and females
will be identical regardless of the coding scheme used. The only difference
is in the way that the coefficients are interpreted.

Qualitative Predictors with More than Two Levels

When a qualitative predictor has more than two levels, a single dummy
variable cannot represent all possible values. In this situation, we can create
additional dummy variables. For example, for the ethnicity variable we
create two dummy variables. The first could be

1 if ith person is Asian
T = o . . (3.28)
0 if 4th person is not Asian,
and the second could be
iy — 1 %f z:th person %s Caucasian | (3.29)
0 if ith person is not Caucasian.

Then both of these variables can be used in the regression equation, in
order to obtain the model

Bo+0B1+¢; if ith person is Asian
Yi = Po+Bixin+P2xin4€; =  Bo+B2+€; if ith person is Caucasian
Bo+e€i if 4th person is African American.
(3.30)
Now fy can be interpreted as the average credit card balance for African
Americans, 1 can be interpreted as the difference in the average balance
between the Asian and African American categories, and (2 can be inter-
preted as the difference in the average balance between the Caucasian and
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Coefficient  Std. error t-statistic p-value
Intercept 531.00 46.32 11.464 < 0.0001
ethnicity[Asian] —18.69 65.02 —0.287 0.7740
ethnicity[Caucasian] —12.50 56.68 —0.221 0.8260

TABLE 3.8. Least squares coefficient estimates associated with the regression
of balance onto ethnicity in the Credit data set. The linear model is given in
(3.30). That is, ethnicity is encoded via two dummy variables (3.28) and (3.29).

African American categories. There will always be one fewer dummy vari-
able than the number of levels. The level with no dummy variable—African
American in this example—is known as the baseline.

From Table 3.8, we see that the estimated balance for the baseline,
African American, is $531.00. It is estimated that the Asian category will
have $18.69 less debt than the African American category, and that the
Caucasian category will have $12.50 less debt than the African American
category. However, the p-values associated with the coefficient estimates for
the two dummy variables are very large, suggesting no statistical evidence
of a real difference in credit card balance between the ethnicities. Once
again, the level selected as the baseline category is arbitrary, and the final
predictions for each group will be the same regardless of this choice. How-
ever, the coefficients and their p-values do depend on the choice of dummy
variable coding. Rather than rely on the individual coefficients, we can use
an F-test to test Hy : 1 = P2 = 0; this does not depend on the coding.
This F-test has a p-value of 0.96, indicating that we cannot reject the null
hypothesis that there is no relationship between balance and ethnicity.

Using this dummy variable approach presents no difficulties when in-
corporating both quantitative and qualitative predictors. For example, to
regress balance on both a quantitative variable such as income and a qual-
itative variable such as student, we must simply create a dummy variable
for student and then fit a multiple regression model using income and the
dummy variable as predictors for credit card balance.

There are many different ways of coding qualitative variables besides
the dummy variable approach taken here. All of these approaches lead to
equivalent model fits, but the coefficients are different and have different
interpretations, and are designed to measure particular contrasts. This topic
is beyond the scope of the book, and so we will not pursue it further.

3.3.2  FExtensions of the Linear Model

The standard linear regression model (3.19) provides interpretable results
and works quite well on many real-world problems. However, it makes sev-
eral highly restrictive assumptions that are often violated in practice. Two
of the most important assumptions state that the relationship between the
predictors and response are additive and linear. The additive assumption

baseline

contrast
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means that the effect of changes in a predictor X; on the response Y is
independent of the values of the other predictors. The linear assumption
states that the change in the response ¥ due to a one-unit change in X; is
constant, regardless of the value of X;. In this book, we examine a number
of sophisticated methods that relax these two assumptions. Here, we briefly
examine some common classical approaches for extending the linear model.

Removing the Additive Assumption

In our previous analysis of the Advertising data, we concluded that both TV
and radio seem to be associated with sales. The linear models that formed
the basis for this conclusion assumed that the effect on sales of increasing
one advertising medium is independent of the amount spent on the other
media. For example, the linear model (3.20) states that the average effect
on sales of a one-unit increase in TV is always (1, regardless of the amount
spent on radio.

However, this simple model may be incorrect. Suppose that spending
money on radio advertising actually increases the effectiveness of TV ad-
vertising, so that the slope term for TV should increase as radio increases.
In this situation, given a fixed budget of $100,000, spending half on radio
and half on TV may increase sales more than allocating the entire amount
to either TV or to radio. In marketing, this is known as a synergy effect,
and in statistics it is referred to as an interaction effect. Figure 3.5 sug-
gests that such an effect may be present in the advertising data. Notice
that when levels of either TV or radio are low, then the true sales are lower
than predicted by the linear model. But when advertising is split between
the two media, then the model tends to underestimate sales.

Consider the standard linear regression model with two variables,

Y = fo + B1 X1 + B2 X2 + e

According to this model, if we increase X; by one unit, then Y will increase
by an average of (1 units. Notice that the presence of X5 does not alter
this statement—that is, regardless of the value of X5, a one-unit increase
in X7 will lead to a #1-unit increase in Y. One way of extending this model
to allow for interaction effects is to include a third predictor, called an
interaction term, which is constructed by computing the product of X,
and X5. This results in the model

Y = fo+ f1 X1+ f2Xo + B3 X1 Xo + €. (3.31)

How does inclusion of this interaction term relax the additive assumption?
Notice that (3.31) can be rewritten as

Y = Bo+ (B +5:3X2) X1 + Xy + € (3.32)
= Bo+PiXi+PXs+e
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Coefficient  Std. error t-statistic p-value
Intercept 6.7502 0.248 27.23 < 0.0001
TV 0.0191 0.002 12.70 < 0.0001
radio 0.0289 0.009 3.24 0.0014
TVXradio 0.0011 0.000 20.73 < 0.0001

TABLE 3.9. For the Advertising data, least squares coefficient estimates asso-
ciated with the regression of sales onto TV and radio, with an interaction term,
as in (3.33).

where Bl = (1 + P3X2. Since Bl changes with X5, the effect of X; on Y is
no longer constant: adjusting Xo will change the impact of X; on Y.

For example, suppose that we are interested in studying the productiv-
ity of a factory. We wish to predict the number of units produced on the
basis of the number of production lines and the total number of workers.
It seems likely that the effect of increasing the number of production lines
will depend on the number of workers, since if no workers are available
to operate the lines, then increasing the number of lines will not increase
production. This suggests that it would be appropriate to include an inter-
action term between lines and workers in a linear model to predict units.
Suppose that when we fit the model, we obtain

units ~ 1.2+ 3.4 X lines + 0.22 X workers + 1.4 X (lines X Workers)
= 12+ (3.4 + 1.4 x workers) X lines + 0.22 X workers.

In other words, adding an additional line will increase the number of units
produced by 3.4 + 1.4 X workers. Hence the more workers we have, the
stronger will be the effect of lines.

We now return to the Advertising example. A linear model that uses
radio, TV, and an interaction between the two to predict sales takes the
form

sales = [+ [1 X TV+ P2 X radio + f3 X (radio X TV) + €
= Bo+ (B1 + B3 x radio) X TV + By x radio + €. (3.33)

We can interpret 3 as the increase in the effectiveness of TV advertising
for a one unit increase in radio advertising (or vice-versa). The coefficients
that result from fitting the model (3.33) are given in Table 3.9.

The results in Table 3.9 strongly suggest that the model that includes the
interaction term is superior to the model that contains only main effects.
The p-value for the interaction term, TVxradio, is extremely low, indicating
that there is strong evidence for H, : B3 # 0. In other words, it is clear that
the true relationship is not additive. The R? for the model (3.33) is 96.8 %,
compared to only 89.7% for the model that predicts sales using TV and
radio without an interaction term. This means that (96.8 — 89.7)/(100 —
89.7) = 69 % of the variability in sales that remains after fitting the ad-
ditive model has been explained by the interaction term. The coefficient

main effect
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estimates in Table 3.9 suggest that an increase in TV advertising of $1,000 is
associated with increased sales of () + B3 X radio) x 1,000 = 19+ 1.1 x radio
units. And an increase in radio advertising of $1,000 will be associated with
an increase in sales of (82 + (3 x TV) x 1,000 = 29 4+ 1.1 X TV units.

In this example, the p-values associated with TV, radio, and the interac-
tion term all are statistically significant (Table 3.9), and so it is obvious
that all three variables should be included in the model. However, it is
sometimes the case that an interaction term has a very small p-value, but
the associated main effects (in this case, TV and radio) do not. The hier-
archical principle states that if we include an interaction in a model, we
should also include the main effects, even if the p-values associated with
their coefficients are not significant. In other words, if the interaction be-
tween X7 and X, seems important, then we should include both X; and
X5 in the model even if their coefficient estimates have large p-values. The
rationale for this principle is that if X; x X5 is related to the response,
then whether or not the coefficients of X; or Xs are exactly zero is of lit-
tle interest. Also X; x X5 is typically correlated with X; and X5, and so
leaving them out tends to alter the meaning of the interaction.

In the previous example, we considered an interaction between TV and
radio, both of which are quantitative variables. However, the concept of
interactions applies just as well to qualitative variables, or to a combination
of quantitative and qualitative variables. In fact, an interaction between
a qualitative variable and a quantitative variable has a particularly nice
interpretation. Consider the Credit data set from Section 3.3.1, and suppose
that we wish to predict balance using the income (quantitative) and student
(qualitative) variables. In the absence of an interaction term, the model
takes the form

a1 Bo + 1 x n B2 if ith person is a student
alance; ~ income;
’ 0 ! ' 0 if ith person is not a student

Bo + B2 if 4th person is a student
Bo if ith person is not a student.

(3.34)

Notice that this amounts to fitting two parallel lines to the data, one for
students and one for non-students. The lines for students and non-students
have different intercepts, By 4+ P2 versus [y, but the same slope, 8. This
is illustrated in the left-hand panel of Figure 3.7. The fact that the lines
are parallel means that the average effect on balance of a one-unit increase
in income does not depend on whether or not the individual is a student.
This represents a potentially serious limitation of the model, since in fact a
change in income may have a very different effect on the credit card balance
of a student versus a non-student.

This limitation can be addressed by adding an interaction variable, cre-
ated by multiplying income with the dummy variable for student. Our

= [ X income; + {

hierarchical
principle
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FIGURE 3.7. For the Credit data, the least squares lines are shown for pre-
diction of balance from income for students and non-students. Left: The model
(3.34) was fit. There is no interaction between income and student. Right: The
model (3.35) was fit. There is an interaction term between income and student.

model now becomes

balance; =~ [g+ (1 X income; +

Bo + (B3 X income; if student
if not student

(Bo + B2) + (B1 + P3) X income;  if student
Bo + B1 X income; if not student

(3.35)

Once again, we have two different regression lines for the students and
the non-students. But now those regression lines have different intercepts,
Bo+ P2 versus [y, as well as different slopes, 31+ 33 versus ;. This allows for
the possibility that changes in income may affect the credit card balances
of students and non-students differently. The right-hand panel of Figure 3.7
shows the estimated relationships between income and balance for students
and non-students in the model (3.35). We note that the slope for students
is lower than the slope for non-students. This suggests that increases in
income are associated with smaller increases in credit card balance among
students as compared to non-students.

Non-linear Relationships

As discussed previously, the linear regression model (3.19) assumes a linear
relationship between the response and predictors. But in some cases, the
true relationship between the response and the predictors may be non-
linear. Here we present a very simple way to directly extend the linear model
to accommodate non-linear relationships, using polynomial regression. In
later chapters, we will present more complex approaches for performing
non-linear fits in more general settings.

Consider Figure 3.8, in which the mpg (gas mileage in miles per gallon)
versus horsepower is shown for a number of cars in the Auto data set. The

polynomial
regression
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FIGURE 3.8. The Auto data set. For a number of cars, mpg and horsepower are
shown. The linear regression fit is shown in orange. The linear regression fit for a
model that includes horsepower” is shown as a blue curve. The linear regression
fit for a model that includes all polynomials of horsepower up to fifth-degree is
shown in green.

orange line represents the linear regression fit. There is a pronounced rela-
tionship between mpg and horsepower, but it seems clear that this relation-
ship is in fact non-linear: the data suggest a curved relationship. A simple
approach for incorporating non-linear associations in a linear model is to
include transformed versions of the predictors in the model. For example,
the points in Figure 3.8 seem to have a quadratic shape, suggesting that a
model of the form

mpg = B¢ + B1 X horsepower + /35 X horsepower® + € (3.36)

may provide a better fit. Equation 3.36 involves predicting mpg using a
non-linear function of horsepower. But it is still a linear model! That is,
(3.36) is simply a multiple linear regression model with X; = horsepower
and X5 = horsepower”. So we can use standard linear regression software to
estimate o, f1, and 2 in order to produce a non-linear fit. The blue curve
in Figure 3.8 shows the resulting quadratic fit to the data. The quadratic
fit appears to be substantially better than the fit obtained when just the
linear term is included. The R? of the quadratic fit is 0.688, compared to
0.606 for the linear fit, and the p-value in Table 3.10 for the quadratic term
is highly significant.

If including horsepower? led to such a big improvement in the model, why
not include horsepower”, horsepower”, or even horsepower”? The green curve

quadratic
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Coefficient  Std. error t-statistic p-value
Intercept 56.9001 1.8004 31.6 < 0.0001
horsepower —0.4662 0.0311 —-15.0 < 0.0001
horsepower? 0.0012 0.0001 10.1 < 0.0001

TABLE 3.10. For the Auto data set, least squares coefficient estimates associated
with the regression of mpg onto horsepower and horsepower”.

in Figure 3.8 displays the fit that results from including all polynomials up
to fifth degree in the model (3.36). The resulting fit seems unnecessarily
wiggly—that is, it is unclear that including the additional terms really has
led to a better fit to the data.

The approach that we have just described for extending the linear model
to accommodate non-linear relationships is known as polynomial regres-
sion, since we have included polynomial functions of the predictors in the
regression model. We further explore this approach and other non-lincar
extensions of the linear model in Chapter 7.
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