<style> .pull-left-50 { float: left; width: 50%; } .pull-right-50 { float: right; width: 50%; } .pull-left-60 { float: left; width: 60%; } .pull-right-40 { float: right; width: 40%; } .pull-right-40-padding { float: right; width: 38%; padding-left: 10px } </style> <style> .pull-left-70 { float: left; width: 70%; } .pull-right-30 { float: right; width: 30%; } </style> <div class = "content"> <br> <center> <div style = 'margin-top: -60px; margin-bottom: -100px; margin-left:-30px; margin-right:-30px;'> <p class="text-center" style = 'font-size: 56px; line-height:1.5; font-weight:bold;'>Data science for decision-making in public health</p> <!-- <p class="text-center" style = 'font-size: 56px; line-height:1.5; font-weight:bold;'>Bayesian risk models for tropical disease mapping</p> <p class="text-center" style = 'font-size: 48px; line-height:1.5; font-weight:bold;'>How geostatistics can help with decision-making in global health</p> <p class="text-center" style = 'font-size: 38px; font-weight:bold; margin-top:-40px;'>Case studies in tropical disease mapping</p><br> --> </div> </center> <br> <table style="margin:0px; margin-left:-10px; border-top:0; border-bottom:0;"> <tr> <td style="width: 440px;"> <div style = 'padding: 40px; padding-left: 40px; font-size: 32px; font-weight:bold; margin-top: 10px; margin-bottom: -50px;'> <br> Paula Moraga, Ph.D.<br> </div> <div style = 'padding: 40px; padding-left: 40px; font-size: 28px; margin-bottom: -60px;'> Asst. Professor of Statistics </div> <div style = 'padding: 40px; padding-left: 40px; font-size: 28px; margin-bottom: -55px;'> King Abdullah University of Science and Technology (KAUST), Saudi Arabia </div> <div style = 'padding: 40px; padding-left: 40px; font-size: 26px; line-height:1.5;margin-bottom: 40px;'> <a href='http://twitter.com/Paula_Moraga_' target='_blank'> <i class='fa fa-twitter fa-fw'></i> @Paula_Moraga_</a><br> <a href='https://Paula-Moraga.github.io/' target='_blank'> <i class='fa fa-globe fa-fw'></i> www.PaulaMoraga.com</a><br> <!-- <a href='http://bit.ly/prestdm' target='_blank'><i class='fa fa-link fa-fw'></i> www.paulamoraga.com/presentation-geohealth/</a><br> --> </div> </td> <td> <center> <img src="./figures/logogeohealth.png" height = "200" alt = "a png"><br><br> <img src="./figures/Statistics at KAUST_Logo for digital use_small.png" height = "160" alt = "a png"> </center> </td> </tr> </table> </div> --- background-image: url(./figures/overview.png) background-size: contain --- <div style="margin-top:-40px"></div> <!-- https://annakrystalli.me/literate-programming/ --> ## https://www.paulamoraga.com/book-geospatial/ <div style="margin-top:-10px"></div> .pull-left[ <center> <img src="./figures/bookcover.jpg" style="margin-top:-5px; margin-left:-10px; width:100%;"/> </center> ] .pull-right[ <div style="margin-top:-33px"></div> <blockquote class="twitter-tweet" data-lang="en"><p lang="en" dir="ltr"> <a href="https://twitter.com/Paula_Moraga_/status/1136345687942152194"></a></blockquote> <script async src="https://platform.twitter.com/widgets.js" charset="utf-8"></script> ] --- class: inverse # Open data and collaborative analytical tools for decision-making in public health <br> ## Health surveillance ## Open and reliable data ## Collaborative analytical tools ## Communication and dissemination --- background-image: url(./figures/onehealth2.png) background-size: contain <div style="margin-top:-20px"></div> # One Health --- background-image: url(./figures/emergingdiseases.jpg) background-size: contain <div style="color: gray; height: 20px;bottom:80px;left: 30px;position: fixed;"> <br><br> Marston, et al. 2014.<br> Science Transl Medicine<br> </div> --- background-image: url(./figures/flighttraffic2.gif) background-size: contain background-position: 0 100px <div style="margin-top:-20px"></div> # Global travel <div style="color: gray; height: 20px;bottom:70px;left: 80px;position: fixed;"> <br><br> https://vimeo.com/natsaero<br> </div> --- class: inverse, middle # It is important to acknowledge connectivity between people, animals, and their shared environment and work together to solve global health problems <!-- ## To solve global health problems, it is important to acknowledge this connectivity between people, animals, and their shared environment and to work together with multidisciplinary teams of scientists Show case studies where I collaborated with multidisciplinary temas in tropical disease mapping research --> --- class: inverse, middle, center # Data <!-- # To solve global health problems, we need data. But we do not need just any data # We need reliable, relevant, timely and detailed data --> ## Need reliable, relevant, timely and detailed data --- <div style="margin-top:-20px;"></div> # Disaggregated demographic data .pull-left-50[ <div style="margin-top:0px;"></div> - We need data to know how different groups are doing<br> (e.g., who is at risk of diseases?) - Population registers and censuses provide information on fertility, mortality and migration - Demographic data should be disaggregated by gender, age, geographic location and other characteristics - This is essential for addressing<br> the needs of all groups including the most vulnerable groups which are often overlooked when populations are considered as a whole ] .pull-right-50[ <div style="margin-top:-40px;"></div> <img src="./figures/covidwellcome.png" style="width:100%; margin-left:-10px; margin-top:15px"/> ] <center> <a href="https://wellcomeopenresearch.org/articles/5-117/v1"> https://wellcomeopenresearch.org/articles/5-117/v1 </a> </center> <!-- - Open access to existing data in order to facilitate policy making that is fully informed by evidence. The dissemination of micro-data, with adequate safeguards to protect privacy and ensure confidentiality, expands significantly the potential uses of the information. - Counting all people, because all of them count --> --- # Climate and environmental data Climate and environmental data enables to quantify risk factors <img src="./figures/eo.gif" style="width:100%;"/> <!-- #--- background-image: url(./figures/satellites.jpg) background-size: contain background-position: 0 120px <div style="margin-top:-20px"></div> # Satellite data <div style="color: gray; height: 20px;bottom:70px;left: 80px;position: fixed;"> <br><br> European Space Agency<br> </div> #--- <div style="margin-top:-20px"></div> # Monitoring stations <div style="margin-top:-20px"></div> <center> <img src="./figures/monitoringstations.png" style="height:100%;"/> </center> --> --- <div style="margin-top:-35px"></div> # Geographic data for planning resources Geographic data is needed for determining how to distribute medicines, planning vaccination strategies, etc. <!-- Europe, streets, buildings, schools Ensure resources reach everyone --> <img src="./figures/googlemapslondon.png" style="width:95%;"/> --- <div style="margin-top:-35px"></div> # Geographic data for planning resources Unfortunately this is not the same in all parts of the world and geographic data is an impediment when it comes to determining how to distribute resources. We need to improve availability and quality of data. <!-- We need to improve data --> <img src="./figures/googlemapsmongolia.png" style="width:95%;"/> <!-- Tatem https://www.youtube.com/watch?v=eJXlG8_bRbo https://www.un.org/en/desa/leaving-no-one-behind-counting-all-people-because-all-them-count https://qz.com/982709/google-maps-is-making-entire-communities-invisible-the-consequences-are-worrying/ --> <!-- #--- <div style="margin-top:-35px"></div> # Open data is key for monitoring and achieving global sustainable development <img src="./figures/SDGs.png" style="width:95%;"/> --> --- <div style="margin-top:-20px"></div> # Where to find open data? <img src="./figures/rspatialdata.png" style="width:90%;"/> --- <div style="margin-top:-30px"></div> # https://rspatialdata.github.io/ | Data | R package | Database | |:------------- |:-------------|:-----| | Administrative boundaries | rgeoboundaries | [geoBoundaries](https://www.geoboundaries.org/) | | Population | wopr | [WorldPop](https://www.worldpop.org/) | | OpenStreetMap | osmdata | [OpenStreetMap (OSM)](https://www.openstreetmap.org/) | | Elevation | elevatr | [AWS Terrain Tiles](https://registry.opendata.aws/terrain-tiles/) | | Temperature | raster | [WorldClim](https://www.worldclim.org/) | | Rainfall | nasapower | [NASA-POWER Project](https://power.larc.nasa.gov/) | | Humidity | nasapower | [NASA-POWER Project](https://power.larc.nasa.gov/) | | Vegetation | MODIStsp | [MODIS](https://modis.gsfc.nasa.gov/data/dataprod/) | | Land cover | MODIStsp | [MODIS](https://modis.gsfc.nasa.gov/data/dataprod/) | | Air pollution | openair | [UK Department Environment Food & Rural Affairs](https://uk-air.defra.gov.uk/) | | Demographic and Health Surveys (DHS) | rdhs | [DHS Program](https://www.dhsprogram.com/) | | Malaria | malariaAtlas |[Malaria Atlas Project (MAP)](https://malariaatlas.org/data-project/) | <!-- #--- <div style="margin-top:-40px"></div> # Where to find open data? - Open spatial data sources https://rspatialdata.github.io/ - Administrative boundaries https://www.geoboundaries.org/ - Population https://www.worldpop.org/ - Climate and weather data https://www.worldclim.org/data/index.html - Google Earth Engine Satellite imagery and geospatial datasets https://earthengine.google.com/ - Open Street Map https://www.openstreetmap.org/ --> <!--- - The Demographic and Health Surveys (DHS) Program https://dhsprogram.com/data/ - Data for SDGs https://www.data4sdgs.org/ ---> --- class: inverse, middle, center # Analysis ## Need robust analytical tools to integrate complex data from different sources and different spatial and spatio-temporal resolutions <!-- # We have access to a vast amount of data. These data come from different sources and spatial and spatio-temporal resolutions # We need robust analytical tools to integrate complex data to obtain valid inferences --> --- <div style="margin-top:-40px"></div> # Combining data at different resolutions <div style="margin-top:-20px"></div> ### Air pollution. Fine particulate matter PM2.5 <div style="margin-top:-20px"></div> <img src="./figures/airpollution2.png" style="width:100%;"/> --- <div style="margin-top:-30px"></div> # Satellite derived measurements (grid) <img src="./figures/airpollution-areas.png" style="width:100%;"/> --- <div style="margin-top:-30px"></div> # Ground measurements (points) <img src="./figures/airpollution-points.png" style="width:100%;"/> <div style="margin-top:40px"></div> How to predict air pollution (PM2.5) using point-level data from monitoring stations and area-level data from satellites? <a href="https://doi.org/10.1016/j.spasta.2017.04.006", style="height: 30px;bottom:10px;left: 80px;position: fixed;">Moraga, et al. Spatial Statistics, 2017</a> --- .pull-left-50[ # Disease mapping Disease maps help decision-makers to target health interventions and directing resources where most needed <br> Map shows malaria prevalence in Mozambique. Area-level data unable to show how disease risk varies within areas Areal estimates make difficult targeting health interventions and directing resources where most needed ] .pull-right-50[ <img src="./figures/mozambique1.png" style="width:150%;"/> ] --- # Disaggregate area-level data High-resolution estimates permit to find differences in disease risk within study regions, and identify areas and groups of people at higher risk <img src="./figures/mozambique12precision2.png" style="width:100%;"/> --- background-image: url(./figures/regressionrescov.png) background-size: contain background-position: 0 250px # Quantifying risk factors Investigate relationship between a response variable and explanatory variables available at different spatial scales (e.g., lung cancer at county level and smoking at state level) <div style = "margin-top: 400px" /div> https://vizhub.healthdata.org/subnational/usa --- # Disease surveillance systems Disease surveillance systems are critical to early detection of epidemics and the design of control strategies Traditional surveillance systems rely on data gathered with a considerable delay and make surveillance systems ineffective for real-time surveillance <br> <!-- Public - Clinicians - Local Health Departments - Ministries of Health --> <center> <div style="width:100%;"> <img src="./figures/cold-cover-handkerchief-41284.jpg" style="margin-left:-20px; width:14%;"/> <img src="./figures/arms-care-check-905874.jpg" style="width:35%;"/> <img src="./figures/biology-clinic-doctor-4154.jpg" style="width:31%;"/> <img src="./figures/healthdepartments.png" style="width:18%;"/> </div> --- # Digital data sources Real-time digital information may enable to detect outbreaks earlier <!-- Protecting individual data --> <center> <img src="./figures/apple-applications-apps-607812.jpg" style="width:70%;"/> <br> <span style="color: gray">"Flu plus fever, not a good way to start the weekend"</span> <br> <span style="color: gray">"I'm so irritated at this cough and fever"</span> <br> <span style="color: gray">"This flu, fever & throat ache won't let me sleep"</span> </center> --- # Demographic and environmental risk factors <img src="./figures/eo.gif" style="width:100%;"/> <!-- ## Existing approaches do not produce inferences at spatial resolutions actionable by policymakers <center> <img src="./images/gft.png" style="width:90%;"/> <img src="./images/ARGO.png" style="width:60%;"/> <img src="./images/healthmap.png" style="width:30%;"/> </center> [The New York Times, 2008](https://www.nytimes.com/), [Yang et al., 2015, PNAS](https://doi.org/10.1073/pnas.1515373112), [HealthMap, 2018, PNAS](http://www.healthmap.org/en/) --> <!-- - Policy making need data at a spatial scale that is actionable - However, existing methods produce inferences at regional or national level - Healthmap provide local information but not inferences --> --- <div style="margin-top:-30px"></div> # Disease surveillance systems <div style="margin-top:-10px"></div> Methods to integrate data from multiple sources and at different spatial and spatio-temporal resolutions taking into account all biases and uncertainties to produce local predictions of disease activity in real-time <center> <img src="./figures/datadigital2.png" style="width:85%;"/> </center> --- class: inverse, middle, center # Software <!-- ## Important to share data and analytical tools (others can build upon our work and advance their research faster and way to validate research and collaborate) --> ## Sharing data and code enables reproducibility, reliability and to advance science faster <!-- https://numfocus.org/blog/how-ropensci-uses-code-review-to-promote-reproducible-science --> <!-- #--- <div style="margin-top:-20px;"></div> # [rOpenSci](https://ropensci.org/) - open tools for open science <img src="./figures/ropenscilogo.png" style="width:40%; margin-top:-10px; margin-bottom:10px"/> .pull-left-50[ <div style="margin-top:-20px;"></div> [rOpenSci](https://ropensci.org/) is an initiative that fosters a culture that values **open** and **reproducible** research using **shared** data and reusable software - Computing infrastructure - Data access - Visualization - Bayesian inference - Machine learning - Spatial and time analyses, etc ] .pull-right-50[ <div style="margin-top:-180px;"></div> <img src="./figures/ropenscigithub.png" style="width:100%; margin-left:-10px; margin-top:15px"/> ] #--- background-image: url(./figures/recon.png) background-size: contain <div style="color: gray; height: 20px;bottom:70px;left: 80px;position: fixed;"> <br><br> <a href='https://www.repidemicsconsortium.org/' target='_blank'>https://www.repidemicsconsortium.org/</a><br> </div> --> --- # epiflows. Travel-related spread of disease <div style="color: gray; height: 30px;bottom:10px;left: 80px;position: fixed;"> <a href='https://f1000research.com/articles/7-1374/v3' target='_blank'>Moraga, et al. F1000 Research, 7:1374, 2019</a><br> </div> <img src="./figures/epiflows2.png" style="width:57%;"/> <img src="./figures/epiflows.gif" style="width:42%;"/> </center> Mathematical model that predicts the number of cases that could be spread to other locations from an infectious location together with uncertainty measures Integrates information about the number of infectious cases, population flows, lengths of stay, incubation and infectious periods --- <div style="margin-top:-40px"></div> <!-- <div style="color: gray; height: 30px;bottom:10px;left: 80px;position: fixed;"> <a href='https://doi.org/10.1016/j.sste.2017.08.001' target='_blank'>Moraga. Spatial and Spatio-temporal Epidemiology, 23:47-57, 2017</a><br> </div> --> # SpatialEpiApp <div style="margin-top:-10px"></div> Shiny app for disease risk estimation, cluster detection, and interactive viz - Risk estimates by fitting Bayesian models with [INLA](http://www.r-inla.org/) - Detection of clusters by using the scan statistics in [SaTScan](https://www.satscan.org/) http://www.paulamoraga.com/software/ ```r library(devtools) install_github("Paula-Moraga/SpatialEpiApp") library(SpatialEpiApp) run_app() ``` <img src="./figures/animation.gif" width="100%" style="display: block; margin: auto;" /> --- class: inverse, middle, center # Communication and dissemination ## Effective communication and proper and timely dissemination are crucial for the development and implementation of population policies <!-- ## Effective communication and proper and timely dissemination of information to those responsible for disease prevention and control is crucial for the development and implementation of population health policies ## There are tools available to share information and explore data in an interactive and approachable way by using interactive visualizations, dashboards and web applications --> --- <div style="margin-top:-20px"></div> # Interactive visualizations Data exploration in an interactive and approachable way using maps, time plots, tables, and other visualizations <br> <div style="margin-top:20px"> </div> <center> <div style="margin-left:-50px; margin-right:-50px; width:100%;"> <img src="./figures/gdygraphs.gif" style="margin-left:-50px; width:55%;"/> <img src="./figures/gdatatable.gif" style="margin-right:-50px; width:55%;"/> </div> </center> http://www.htmlwidgets.org/ --- <div style="margin-top:-20px"></div> # Interactive visualizations Overlay of maps of health data, risk factors, political boundaries and other geospatial information useful to put data into context <center> <img src="./figures/gleaflet.gif" style="width:100%;"/> </center> <div style="margin-top:-30px"></div> http://rstudio.github.io/leaflet/ --- <div style="margin-top:-40px"></div> # Interactive dashboards and web applications <div style="margin-top:-20px"></div> Identify information for specific regions, understand how disease patterns change over time, compare risks between populations, measure inequalities, and anticipate health threats for better planning and response <!-- We can build digital atlases that make health risk estimates available and accessible to a wide audience including policymakers and the general public, and disease surveillance systems to monitor diseases in real-time --> <img src="./figures/pm3.gif" width="100%" style="display: block; margin: auto;" /> https://www.paulamoraga.com/book-geospatial/sec-flexdashboard.html <!-- https://rmarkdown.rstudio.com/flexdashboard/ https://shiny.rstudio.com/ --> --- <div style="margin-top:-45px"></div> <!-- - Open and reliable data as well as robust analytical tools are key to enable wide access to data and new methodology, that are needed for the development and implementation of appropriate population health policies --> <h3>Open and reliable data and analytical tools as well as collaborative research are crucial for solving global health challenges, achieving global sustainable development and leaving no one behind</h3> <div style="margin-top:-30px"></div> <center> <img src="./figures/sdgsimages.png" style="width:80%;"/> </center> <div style="margin-top:0px"></div> <center><a href="https://sdgs.un.org/goals">https://sdgs.un.org/goals </center> --- background-image: url(./figures/Admissions-com-2020-COVID.png) background-size: contain background-position: top right <div style="margin-top:180px"></div> # KAUST Fellowship <div style="margin-top:10px"></div> ## Full free tuition support, monthly living allowance, free housing and medical insurance <div style="margin-top:60px"></div> ## KAUST http://kaust.edu.sa ## Statistics Program http://stat.kaust.edu.sa ## Admissions http://admissions.kaust.edu.sa --- <div style="margin-top:-30px;"></div> # References <small> <div style="margin-top:-30px;"></div> .pull-left-70[ Moraga, P. (2019). *Geospatial Health Data: Modeling and Visualization with R-INLA and Shiny*. Chapman & Hall/CRC Press Moraga, P., et al. (2019). epiflows: an R package for risk assessment of travel-related spread of disease. *F1000Research*, 7:1374 Moraga, P. (2018). Small Area Disease Risk Estimation and Visualization Using R. *The R Journal*, 10(1):495-506 Moraga, P. (2017). SpatialEpiApp: A Shiny Web Application for the analysis of Spatial and Spatio-Temporal Disease Data. *Spatial and Spatio-temporal Epidemiology*, 23:47-57 Moraga, P., et al. (2017). A geostatistical model for combined analysis of point-level and area-level data using INLA and SPDE. *Spatial Statistics*, 21:27-41 ] .pull-right-30[ <img src="./figures/bookcover.jpg" style="width:100%; padding-left:30px;"/> ] <div style="margin-bottom:-40px;"> </div> Moraga, P. and Kulldorff, M. (2016). Detection of spatial variations in temporal trends with a quadratic function. *Statistical Methods for Medical Research*, 25(4):1422-1437 Hagan, J. E., Moraga, P., et al. (2016). Spatio-temporal determinants of urban leptospirosis transmission: Four-year prospective cohort study of slum residents in Brazil. *PLOS Neglected Tropical Diseases*, 10(1): e0004275 Moraga, P., et al. (2015). Modelling the distribution and transmission intensity of lymphatic filariasis in sub-Saharan Africa prior to scaling up interventions: integrated use of geostatistical and mathematical modelling. *Parasites & Vectors*, 8:560 </small> --- class: inverse <table style="margin:0px; margin-left:-10px; border-top:0; border-bottom:0;"> <tr> <td style="width: 440px;"> <div style = 'margin-top: 60px; margin-bottom: 40px;'> <span style = 'font-size: 68px; line-height:1.5; font-weight:bold'> Thanks!<br> </span> </div> <span style = 'font-size: 38px; font-weight:bold'> Paula Moraga<br> </span> <br> <span style = 'font-size: 28px; line-height:1.5'> <a href='http://twitter.com/Paula_Moraga_' target='_blank'> <i class='fa fa-twitter fa-fw'></i> @Paula_Moraga_</a><br> <a href='https://Paula-Moraga.github.io/' target='_blank'><i class='fa fa-globe fa-fw'></i> www.PaulaMoraga.com</a><br> </span> </td> <td> <div style = 'margin-top: 120px; margin-bottom: 40px;'> </div> <center> <img src="./figures/logogeohealthdarkbackground.png" height = "220" alt = "a png"><br><br> <img src="./figures/Statistics at KAUST_Logo for digital use_small.png" height = "160" alt = "a png"> </center> </td> </tr> </table> </div>