<div class = "content"> <br> <center> <div style = 'margin-top: -70px; margin-bottom: -120px;'> <p class="text-center" style = 'font-size: 54px; line-height:1.3; font-weight:bold'>Geospatial Risk Models for Decision-Making in<br> Global Health</p> </div> </center> <br> <table style="margin:0px; margin-left:-10px; border-top:0; border-bottom:0;"> <tr> <td style="width: 440px;"> <div style = 'padding: 40px; padding-left: 40px; font-size: 32px; font-weight:bold; margin-top: 20px; margin-bottom: -50px;'> <br> Paula Moraga, Ph.D.<br> </div> <div style = 'padding: 40px; padding-left: 40px; font-size: 28px; margin-bottom: -60px;'> Asst. Professor of Statistics </div> <div style = 'padding: 40px; padding-left: 40px; font-size: 28px; margin-bottom: -55px;'> King Abdullah University of Science and Technology (KAUST), Saudi Arabia </div> <div style = 'padding: 40px; padding-left: 40px; font-size: 26px; line-height:1.5;margin-bottom: 40px;'> <a href='http://twitter.com/Paula_Moraga_' target='_blank'> <i class='fa fa-twitter fa-fw'></i> @Paula_Moraga_</a><br> <a href='https://Paula-Moraga.github.io/' target='_blank'> <i class='fa fa-globe fa-fw'></i> www.PaulaMoraga.com</a><br> </div> </td> <td> <br> <center> <img src="./figures/logogeohealth.png" height = "200" alt = "a png"><br><br> <img src="./figures/Statistics at KAUST_Logo for digital use_small.png" height = "160" alt = "a png"> </center> </td> </tr> </table> </div> <style> .pull-left-50 { float: left; width: 50%; } .pull-right-50 { float: right; width: 50%; } .pull-left-60 { float: left; width: 60%; } .pull-right-40 { float: right; width: 40%; } .pull-right-40-padding { float: right; width: 38%; padding-left: 10px } </style> <!-- #--- <div style="margin-top:-20px"></div> # Who am I? <div style="margin-top:-20px"></div> <style type="text/css"> .circular--square { border-radius: 50%; } </style> <table style="margin:20px; border-top:0; border-bottom:0; margin-bottom: -20px;"> <tr> <td> <p style="font-size:25px"><b>Paula Moraga, Ph.D.</b></p> Assistant Professor of Statistics <br>for Public Health at KAUST<br><br> PI Geospatial Statistics and Health Surveillance Research Group<br><br> <img src="./figures/Statistics at KAUST_Logo for digital use_small.png" height = "120" alt = "a png"> <img src="./figures/logogeohealth.png" height = "120" alt = "a png"> </td> <td style="width:40%"> <img class = "circular--square" src="./figures/paula.png" width = "200" alt = "a png"><br><br> <a href='http://twitter.com/Paula_Moraga_' target='_blank'><i class='fa fa-twitter fa-fw'></i> @Paula_Moraga_</a><br> <a href='https://Paula-Moraga.github.io/' target='_blank'><i class='fa fa-globe fa-fw'></i> www.PaulaMoraga.com</a><br> </td> </tr> </table> <br> <i class='fa fa-map-marked-alt fa-fw'></i> Geospatial data analysis, statistical modeling<br> <i class='fa fa-hospital fa-fw'></i> Spatial epidemiology, disease mapping, health surveillance<br> <i class='fa fa-laptop fa-fw'></i> Development of R packages and interactive visualization applications<br> <i class='fa fa-book fa-fw'></i> Author book Geospatial Health Data http://bit.ly/bookgeo<br> <i class='fa fa-graduation-cap fa-fw'></i> PhD Mathematics, Valencia. Master's Biostatistics, Harvard<br> --> --- background-image: url(./figures/overview.png) background-size: contain --- <div style="margin-top:-20px"></div> ## Book <div style="margin-top:-10px"></div> Geospatial Health Data: Modeling and Visualization with R-INLA and Shiny (2019, Chapman & Hall/ CRC Press) http://www.paulamoraga.com/book-geospatial/ .pull-left[ <div style="margin-top:-20px"></div> - Manipulate and transform point, areal and raster data,<br> and create maps with R - Fit and interpret Bayesian spatial and spatio-temporal models with INLA and SPDE - Model disease risk and quantify risk factors in different settings - Interactive visualizations, reproducible reports, dashboards, and Shiny apps - Health examples but methods useful to analyze georeferenced data in other fields such as ecology or criminology ] .pull-right[ <center> <img src="./figures/bookcover.jpg" style="margin-top:-5px; margin-left:-10px; width:85%;"/> </center> ] --- class: inverse <br> # Bayesian Geospatial Models for<br> Tropical Disease Mapping <br> ## Lymphatic filariasis in sub-Saharan Africa ## Leptospirosis in Brazil --- class: inverse, center, middle # Lymphatic filariasis in sub-Saharan Africa ### Modelling the distribution and transmission intensity of lymphatic filariasis in sub-Saharan Africa prior to scaling up interventions: integrated use of geostatistical and mathematical modelling ### [Moraga, et al., Parasites & Vectors, 8:560, 2015](https://doi.org/10.1186/s13071-015-1166-x) --- <div style="margin-top:-35px"></div> # Geospatial modelling of lymphatic filariasis prevalence in sub-Saharan Africa <div style="margin-top:-35px"></div> .pull-left-60[ Lymphatic filariasis (LF) caused by microscopic worms and transmitted by mosquitoes Disfigurement and disabilities due to lymphedema, elephantiasis and hydrocele <img src="./figures/lflifecycle.JPG" style="width:90%;"/> ] .pull-right-40[ <img src="./figures/lfAedesaegypti.jpg" style="width:80%;"/> <img src="./figures/lfsymptoms1.jpg" style="width:80%;"/> ] --- background-image: url(./figures/lfburdenourworldindata1.png) background-size: contain <!-- https://ourworldindata.org/grapher/prevalence-of-lymphatic-filariasis) --> --- <div style="margin-top:-20px"></div> # Geospatial modelling of lymphatic filariasis prevalence in sub-Saharan Africa Main strategy against the disease is **Mass Drug Administration** (recommended to entire populations in regions where prevalence exceeds 1% annually for at least five years) Resources are limited and need to decide which are the areas most in need <!-- Geographical targeting of interventions is required to ensure programmes are implemented appropriately --> <img src="./figures/mda1.png" style="width:46%;"/> <img src="./figures/lfChildtreatmentfilariasis.JPG" style="padding-bottom:0px; width:50%;"/> <!-- https://cntd.lstmed.ac.uk/our-work/themes/mass-drug-administration-mda https://ourworldindata.org/grapher/prevalence-of-lymphatic-filariasis https://apps.who.int/iris/bitstream/handle/10665/250245/WER9139.pdf;jsessionid=BFDC2323CD77FB87F3856DF837A3B468?sequence=1 https://ig.ft.com/special-reports/elephantiasis/ --> --- <div style="margin-top:-10px"></div> # LF prevalence surveys in sub-Saharan Africa <center> <img src="./figures/africaICTr.png" style="margin-left:-40px; width:75%;"/> </center> <!-- <div style="width:20%;"> 3197 surveys 1990-2014 </div> <div style="width:30%; margin-left:-50px; margin-bottom:-180px"> <img src="./figures/lficttest.jpg" style="width:100%;"/> </div> <center> <img src="./plots/africaICT.png" style="margin-left:10px; width:55%;"/> </center> --> --- <div style="margin-top:-10px"></div> # Predict local LF prevalence <center> <div style="margin-left:-70px; margin-right:-20px; width:120%;"> <img src="./figures/mbg.png" style="width:100%;"/> </div> </center> --- <div style="margin-top: -35px;"> # Predict local LF prevalence <div style="margin-top: -10px;"> `$$Y_i|P(\boldsymbol{x}_i)\sim \mbox{Binomial} (n_i, P(\boldsymbol{x}_i))$$` `$$\mbox{logit}(P(\boldsymbol{x}_i)) = \boldsymbol{z}_i \boldsymbol{\beta} + S(\boldsymbol{x}_i) + u_i$$` Covariates based on characteristics known to affect LF transmission (precipitation, vegetation, elevation, land cover, population density, etc.) <div style="margin-top: -10px;"> <!-- (temperature, precipitation, vegetation, elevation, distance to water bodies, urbanization, land cover, population density, etc) Random effects (Gaussian process with Matern covariate funcion, Independent risk) --> Random effects model residual variation not explained by covariates <center> <img src="./figures/covgrf.png" style="width:97%;"/> </center> --- background-size: contain .pull-left-50[ # LF predictions ### Maps can help surveillance activities by ### - identifying areas that require enhanced interventions ### - setting a benchmark for evaluating the impact of interventions ] .pull-right-50[  ] --- class: inverse, center, middle # Leptospirosis in Brazil ### Spatio-temporal determinants of urban leptospirosis transmission: Four-year prospective cohort study of slum residents in Brazil ### [Hagan, Moraga, et al., PLOS Neglected Tropical Diseases,<br> 10(1): e0004275, 2016](https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0004275) --- <div style="margin-top:-30px"></div> # Spatio-temporal determinants of urban leptospirosis transmission in Brazil <div style="margin-top:-15px"></div> <!-- # Spatio-temporal determinants of urban leptospirosis transmission: Four-year prospective cohort study of slum residents in Brazil --> .pull-left-50[ **Transmission** via direct skin or mucosal contact with animal reservoirs or an environment contaminated with infected urine **Manifestations**: fever, headache, myalgia, aseptic meningitis, jaundice, renal failure, pulmonary hemorrhage syndrome Urban health problem due to the **rapid and disorganized expansion of urban centers**, creating ecological conditions for rat-borne transmission Predominantly affects **vulnerable populations** such as subsistence farmers and residents of urban<br> slums in the tropics ] <!-- https://www.google.com/search?safe=strict&rlz=1C1GCEV_en&biw=1920&bih=969&tbm=isch&sxsrf=ACYBGNSCjyvzOzkeqzz5w6K8zXqMVDhAKA%3A1575918696756&sa=1&ei=aJzuXZPeLZu6gAaiiLPwBA&q=leptospirosis+cycle&oq=leptospirosis+cycle&gs_l=img.3..0j0i8i30l5.65261.65982..66461...0.0..0.210.916.5j2j1......0....1..gws-wiz-img.......35i39j0i67j0i7i30j0i24j0i5i30.hI2NxAn9BJw&ved=0ahUKEwiTsvXQoqnmAhUbHcAKHSLEDE4Q4dUDCAc&uact=5#imgrc=b2D4YGJZcyKHeM: --> .pull-right-50[ <img src="./figures/cyclelepto.jpg" style="margin-top:10px; padding-left:20px; width:90%;"/> ] --- # Leptospirosis in Pau da Lima, Brazil <!-- Leptospirosis emerging as a major urban health problem due to the rapid and disorganized expansion of urban centers, creating ecological conditions for rat-borne transmission Pau da Lima is a urban slum in Salvador, Bahia, that hosts a densely populated community with a high annual incidence of leptospirosis --> Pau da Lima is a urban slum in Salvador, Bahia, that hosts a densely populated community with a high annual incidence of leptospirosis <center> <div style="margin-left:-80px; margin-right:-20px; width:122%;"> <img src="./figures/salvador.jpg" style="width:42%;"/> <img src="./figures/paudalimaaerial1.jpg" style="width:57.2%;"/> </div> </center> --- <center> <div style="margin-top:-20px; margin-left:-80px; margin-right:-20px; width:122%;"> <img src="./figures/paudalimaelevationj.jpg" style="width:50%;"/> <img src="./figures/paudalimaropaj.jpg" style="width:49%;"/> <img src="./figures/paudalimaclearingoutopensewer.jpg" style="width:50%;"/> <img src="./figures/paudalimagarbagecollectionj.jpg" style="width:49%;"/> </div> </center> --- <div style="margin-top: -40px;"> # Leptospirosis in Pau da Lima <div style="margin-top: -10px;"> ### Objective <div style="margin-top: -20px;"> We wish to understand the spatio-temporal patterns of leptospirosis and identify targets for intervention in Pau da Lima ### Data <div style="margin-top: -20px;"> 2003 subjects recruited and followed for a four-year period (2003-2007) Annual administration of questionnaires and GIS mapping to determine socio-behavioral and environmental risk factors ### Spatio-temporal mixed model <div style="margin-top: -20px;"> `$$Y_{ij}| P(\boldsymbol{s}_i, j) \sim Bernoulli(P(\boldsymbol{s}_i, j))$$` `$$logit(P(\boldsymbol{s}_i, j))= \boldsymbol{z}_{ij} \boldsymbol{\beta} + \xi(\boldsymbol{s}_i,j) + u_i$$` `$$\xi(\boldsymbol{s}_i,j)=a \xi(\boldsymbol{s}_i,j-1)+w(\boldsymbol{s}_i,j)$$` `$$|a|<1, \xi(\boldsymbol{s}_i,1) \sim N(0, \sigma_w^2/ (1-a^2)), w(\boldsymbol{s}_i,j) \sim N(0,\sigma^2_w C(h))$$` `$$u_i \sim N(0, 1/\tau_u)$$` --- background-image: url(./figures/variables.png) background-size: contain --- # Selection fixed effects Within each group, fit GAM using all categorical variables, non-linear effects of continuous variables, and interactions between them Remove covariates one by one until obtaining a model with minimum AIC - Demographic and social status factors `\(\longrightarrow\)` V1 - Health factors `\(\longrightarrow\)` V2 - Occupational exposures `\(\longrightarrow\)` V3 - Household environment `\(\longrightarrow\)` V4 - Household behaviour `\(\longrightarrow\)` V5 - Household reservoirs `\(\longrightarrow\)` V6 - Work behaviour `\(\longrightarrow\)` V7 - Work reservoirs `\(\longrightarrow\)` V8 Merge groups and explore further simplification by backward elimination until no longer possible to reduce AIC V1+V2+V3+V4+V5+V6+V7+V8 `\(\longrightarrow\)` V --- # Selection fixed effects Model includes: - year of follow-up (1st, 2nd, 3rd or 4th year) - gender (male/ female) - being literate (literate / illiterate) - house elevation - observation of rats near house (observe/ not observe) - contact with mud near house (contact / no contact) - non-linear effect of age <center> <img src="./figures/gamagefinalmodelt.png" style="margin-top:-40px; margin-left:180px; width:46%;"/> </center> --- # Risk factors <div style="margin-top: -20px;"> <img src="./figures/riskfactors.png" style="width:95%;"/> </div> --- # Areas with highest (red) and lowest (blue) odds of infection <center> <div style="margin-top: -10px; margin-left:-50px; margin-right:-50px; width:75%;"> <img src="./figures/highestlowestodds2.png"/> </div> </center> <style> .contentlepto { width: 50%; position: relative; /* Position the background text */ left: 0; /* top: 0; left: 0; right: 0; At the bottom. Use top:0 to append it to the top */ background: rgb(0, 0, 0); /* Fallback color */ background: rgba(0, 0, 0, 0.5); /* Black background with 0.5 opacity */ color: #f1f1f1; /* Grey text */ width: 100%; /* Full width */ padding: 10px; /* Some padding */ } </style> --- <div style="margin-top:-20px;"> <h1>High-risk region</h1> <p style="margin-top:-20px; margin-bottom:20px;">High-risk region in which measured risk is consistent with prediction <p> </div> <center> <div style="margin-left:-20px; width:100%;"> <img style="margin-left:-20px; width:90%;" src="./figures/highriskr.png"/> </div> </center> --- <div style="margin-top:-20px;"> <h1>High positive residual</h1> <p style="margin-top:-20px; margin-bottom:20px;">Poor household construction and flood risk due to poor infrastructure <p> </div> <center> <div style="width:52%;"> <img src="./figures/positiveresidual.png"/> </div> </center> --- <div style="margin-top:-20px;"> <h1>High negative residual</h1> <p style="margin-top:-20px; margin-bottom:20px;">Open sewers with structural barriers to stop overflow <p> </div> <center> <div style="margin-left:-80px; margin-right:-20px; width:125%;"> <img src="./figures/negativeresidual1.png" style="width:35.8%;"/> <img src="./figures/negativeresidual2.png" style="width:63.5%;"/> </div> </center> <style> .pull-left-70 { float: left; width: 70%; } .pull-right-30 { float: right; width: 30%; } </style> --- # Conclusions <br> - Young adults, males, and individuals with low social status may have activities that place them in more frequent or more intense contact with sources of transmission <div style="margin-top:40px;"></div> - Interventions such providing adequate sanitation systems may reduce the burden of leptospirosis by protecting residents from contact with contaminated soil and mud during heavy rain events <div style="margin-top:40px;"></div> - Areas in which transmission risk cannot be adequately explained using known risk factors enable the identification of new hypotheses about transmission and guide targeted interventions --- background-image: url(./figures/Admissions-com-2020-COVID.png) background-size: contain background-position: top right <div style="margin-top:160px"></div> # Join my GeoHealth research group at KAUST! <div style="margin-top:-20px"></div> I am looking for outstanding PhD students and Postdocs to join my group <div style="margin-top:-10px"></div> 👩💻 Potential research areas include the development of innovative statistical methods and computational tools for health and environmental applications - Disease mapping, detection of clusters, early detection of outbreaks - Integration of spatial and spatio-temporal data - Development of R packages for data analysis and visualization 💪 Work closely with collaborators at KAUST and around the world ✈️ Generous travel funding to attend conferences and workshops ✨ Excellent research environment, free tuition, monthly living allowance, free housing, medical insurance, relocation support <!-- https://emoji.muan.co/#rais --> <div style="margin-top:10px"></div> KAUST http://kaust.edu.sa Statistics Program http://stat.kaust.edu.sa Admissions http://admissions.kaust.edu.sa http://studyat.kaust.edu.sa --- <div style="margin-top:-30px;"></div> # References <small> <div style="margin-top:-30px;"></div> .pull-left-70[ Moraga, P. (2019). *Geospatial Health Data: Modeling and Visualization with R-INLA and Shiny*. Chapman & Hall/CRC Press Moraga, P., et al. (2019). epiflows: an R package for risk assessment of travel-related spread of disease. *F1000Research*, 7:1374 Moraga, P. (2018). Small Area Disease Risk Estimation and Visualization Using R. *The R Journal*, 10(1):495-506 Moraga, P. (2017). SpatialEpiApp: A Shiny Web Application for the analysis of Spatial and Spatio-Temporal Disease Data. *Spatial and Spatio-temporal Epidemiology*, 23:47-57 Moraga, P., et al. (2017). A geostatistical model for combined analysis of point-level and area-level data using INLA and SPDE. *Spatial Statistics*, 21:27-41 ] .pull-right-30[ <img src="./figures/bookcover.jpg" style="width:100%; padding-left:30px;"/> ] <div style="margin-bottom:-40px;"> </div> Moraga, P. and Kulldorff, M. (2016). Detection of spatial variations in temporal trends with a quadratic function. *Statistical Methods for Medical Research*, 25(4):1422-1437 Hagan, J. E., Moraga, P., et al. (2016). Spatio-temporal determinants of urban leptospirosis transmission: Four-year prospective cohort study of slum residents in Brazil. *PLOS Neglected Tropical Diseases*, 10(1): e0004275 Moraga, P., et al. (2015). Modelling the distribution and transmission intensity of lymphatic filariasis in sub-Saharan Africa prior to scaling up interventions: integrated use of geostatistical and mathematical modelling. *Parasites & Vectors*, 8:560 </small> --- class: inverse <table style="margin:0px; margin-left:-10px; border-top:0; border-bottom:0;"> <tr> <td style="width: 440px;"> <div style = 'margin-top: 60px; margin-bottom: 40px;'> <span style = 'font-size: 68px; line-height:1.5; font-weight:bold'> Thanks!<br> </span> </div> <span style = 'font-size: 38px; font-weight:bold'> Paula Moraga<br> </span> <br> <span style = 'font-size: 28px; line-height:1.5'> <a href='http://twitter.com/Paula_Moraga_' target='_blank'> <i class='fa fa-twitter fa-fw'></i> @Paula_Moraga_</a><br> <a href='https://Paula-Moraga.github.io/' target='_blank'><i class='fa fa-globe fa-fw'></i> www.PaulaMoraga.com</a><br> </span> </td> <td> <div style = 'margin-top: 120px; margin-bottom: 40px;'> </div> <center> <img src="./figures/logogeohealthdarkbackground.png" height = "220" alt = "a png"><br><br> <img src="./figures/Statistics at KAUST_Logo for digital use_small.png" height = "160" alt = "a png"> </center> </td> </tr> </table> </div>